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Abstract

In this paper, a new approximate formula to probability integral is deduced using theoretical
analysis combining with computer numerical simulation. The absolute storage capacity of the
Hopfield neural network is analyzed with this approximate formula and a more strict result is
obtained.
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1. Introduction

Storage capacity is an important parameter of neural networks. The statistical storage
capacity of the Hopfield neural network (HNN) [1] analyzed by means of equilibrium
statistical mechanics is about 0.14 [2,3]. It is found that, when the storage capac-
ity of HNN is about 0.14, there are many metastable states, which are separated by
high-energy barriers and exist around the memorized patterns with very small Ham-
ming distance. The retrieval patterns often fall into these metastable states. However,
as pointed in Ref. [4], strictly speaking, the replica method’s prediction for the sta-
tistical storage capacity of the HNN with zero-temperature dynamics is approximately
0.05 against the numerical result 0.14. In some cases, the network is usually needed to
recollect the storage exactly. So there are also many discussions on the absolute storage
capacity which determines how many patterns can be really stored in the networks [5—
11]. Theoretically, the signal-to-noise theory is often used to resolve the absolute stor-
age capacity of network. In this process, the approximate analytic equation of standard
normal distribution is needed. But different approximate analytic equation often gives
different results. The absolute storage capacity of discrete HNN given in Refs. [5,6] is
%ln N, where N is the number of neurons and that in Ref. [7] is 1/(2InN —InlnN).
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In this paper, we further analyze the approximate analytic equation and find a better
approximate equation of the probability integral. The storage capacity of HNN based
on this equation is much stricter.

2. Approximate analytic equation of standard normal distribution

The positive distribution is an essential and important probability. Many random
variables obey this principle exactly or approximately. Moreover, it is the maximum
distribution of many probabilities. The probability integral of standard normal distri-
bution can be obtained from integral tables generally, and can be calculated by stage
value closing. But in many cases, simple approximate analytic equation is favorable
for finding the answer. Here, we find a better equation according to the theoretical
calculation combined with numerical simulation.

The standard normal function is
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Then @(z) = 0.5+ I(z). Eq. (2) can be translated into integral equation with binary
variables:
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The integral area is the square OBCA as shown in Fig. 1. Expressed in plane polar
coordinate system, Eq. (3) can be rewritten as follows:
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When the integral area is the sector OAB and the upper limit of integral is #' = r, we

have
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Fig. 1. Sketch map of Egs. (4)+6).

While if the integral area is the sector ODE and the upper limit of integral changes
to ¥ = R = /2r, then
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As in Eq. (4), x and y vary in square OACB, #' is limited in the range r <7’ <R,
and the area is between the two sectors, i.e., fmin < I < Imax, We can set

s\ 172
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Thus,

2 1/2
®(r) = % + % {1 — exp (-’1(2’ )] . (8)

Here 1<A(r)<2. To obtain the expression of A(r), From (8) A(#) can be written
as follows:

2 ln[l - (2¢num(r) — 1)2]
r2

Mr) =

» (9)

where @,,,(r) is the probability integral value of standard normal distribution
obtained from integral tables [6]. Using the numerical value of the probability integral,
the value of A(r) can be obtained. Fig. 2 shows A(#) numerical values as a function
of r.

From Fig. 2 one can see that the curves of A(r) is similar to that of exponential
function. It can be expressed as A(r) = a + bexp(—cr?) approximately, where a, b
and ¢ are constant coefficients. The coefficients of Z(r) can be obtained with computer
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Fig. 2. Variation of A(r) as a function of r.

numerical fitting method, a=1.045, $=0.2282, ¢=0.0813. A(r) can be written as

A(r) = 1.045 4 0.2282 exp(—0.0813r2%), (10)
and the probability integral can be obtained as

b, (r)y=[14+2(r))/2, (11)

where

21172
Z(r) = [1 — exp (—i(%)r—ﬂ : (12)

Ref. [12] presents the approximate formula of normal distribution as
(pw(r) = [l + Wl(r)]//z > (13)

where W(r) = [1 — exp(—2/nr?)]"/2. The first step approximation of A(r) can be
obtained as 1.2732, Z(r) = [1 —exp(—0.6366r°)]"/? is similar to W,(r). The maximum
absolute error is about 3x 10~3®,,(r), while is only 10~ with our approximate formula
b.(r).

3. Absolute storage capacity of Hopfield model

In this section, we analyze the absolute storage capacity of discrete HNN based on
the Eqgs. (10)—(12). Suppose there are N neurons and M random pattern S¥ stored in
HNN. Its connection matrix is J;; = Zu Sf‘Sj’-*, in which i,j = 1,2,...,N. For any input

state, the dynamic equation of NN is S;(r + 1) = &(>_ J;;S;(¢)), where © is a symbol
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function. When N and M are large, the probability of the network that every neuron
can iterate correctly can be expressed as [5]

P:\/—lz;’; / exp (—;) dt. (14)
VTR
According to Eq. (11), the above equation can be approximated by
P =[1+Zw)?2, (15)
where u = \/T/'x So the error probability is
p=1-P=[1-Zuw)]?2. (16)

The condition of the single neuron iterating correctly is p — 0. If the number of
error components follows approximately the Poisson distribution [5], then the condition
for a stable attractor of M stored patterns is exp(—Np) = f — 1. Let C = —Inf, we
get

[1—Zw))/2 = % . (17)

Here C,f are constant. The above equation can be rewritten as

(1.045 4 02282 exp(—0.0813/a)) Cn ac ac? (18)
20 - N N?
The approximate solution of the equation can be obtained as
. 1.033 . 1.327
YT 2N 2Inf4C(1 — C/N)]  {2InN — 2In[4C(1 — C/N)H]}?
+smaller order terms . (19

For a fixed correct probability, C < 1. As N is large, C and 4C?/N? can be
neglected. Thus, the approximate value of storage capacity can be written as

L Les3 1327
2N T 2Ny

(20)

Here we can compare our result with that in Refs. [5,7]. Computer simulations show
that, the largest result is that of Ref. [7] when N < 10'®. But when N > 10'7, our result
is the largest. Considering the number of the neurons of the brain is about 10''"!2, our
result is larger than Ref. [5], but smaller than Ref. [7]. A plot of In(¥) vs. the log of
the absolute storage capacities obtained in Refs. [5,7], and here is given in Fig. 3. As
a fact, in order to obtain the absolute storage capacity, N — oo is required. With this
infinity, the result in Ref. [7] is the same as that of Ref. [5,6]; While our result shows
a little larger than them with 0.33%.
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Fig. 3. The comparison of three results of absolute storage capacity. Here (a) N is from 1019-10'3; (b) N
is from 10!8-10%5.

4. Conclusions

In this paper, an approximate expression of standard normal distribution is developed
using theoretical analysis and computer numerical simulation. It is much more precise
than those adopted by other researchers. Using this formula, the absolute storage ca-
pacity of Hopfield neural network is analyzed. The result is a little larger than those
previously reported when N > 10'7,
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